Zeisel"s test - significado y definición. Qué es Zeisel"s test
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Zeisel"s test - definición

Brown-Zeisel number

Steven Zeisel         
MEDICAL ACADEMIC
Steven ziesel; Zeisel, Steven
Steven H. Zeisel is a Kenan Distinguished University Professor in Nutrition and Pediatrics; former Chairman, Department of Nutrition; Director Nutrition Research Institute, Director UNC Human Clinical Nutrition Research Center, Director UNC Center for Excellence in Children’s Nutrition, School of Public Health, University of North Carolina at Chapel Hill.
Zeisel determination         
  • Zeisel determination
CHEMICAL TEST FOR THE PRESENCE OF ESTERS OR ETHERS
Ziesel reaction; Ziesel Reaction
The Zeisel determination or Zeisel test is a chemical test for the presence of esters or ethers in a chemical substance.Prey, V.
Kolmogorov–Smirnov test         
  • Illustration of the two-sample Kolmogorov–Smirnov statistic. Red and blue lines each correspond to an empirical distribution function, and the black arrow is the two-sample KS statistic.
  • PDF]].
NONPARAMETRIC STATISTICAL TEST
Kolmogorov Smirnoff Test; Kolmogorov Smirnov Test; Kolmogorov Smirnov test; Kolmogorov-Smirnov; K-S test; KS Test; KS test; Kolmogorov test; Kolmogorov-Smirnov statistic; Kolmorogov-Smirnov; Kolmogorov Smirnov; Kolmogorov distribution; Kolmogorov-Smirnov test; Kolmogorov–Smirnov; Kolmogorov–Smirnov theorem; Kolmogorov–Smirnov distribution; K-S Test; Kolmogorov-Smirnov theorem; Kolmogorov-Smirnov distribution; Kolmogorov–Smirnov statistic; Kolmogorov-Smirnov D test; Kolmogorov-Smirnoff test; K–S test; Smirnov statistic; Kolmogorov-Smirnov tests
In statistics, the Kolmogorov–Smirnov test (K-S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test).

Wikipedia

Zeisel number

A Zeisel number, named after Helmut Zeisel, is a square-free integer k with at least three prime factors which fall into the pattern

p x = a p x 1 + b {\displaystyle p_{x}=ap_{x-1}+b}

where a and b are some integer constants and x is the index number of each prime factor in the factorization, sorted from lowest to highest. For the purpose of determining Zeisel numbers, p 0 = 1 {\displaystyle p_{0}=1} . The first few Zeisel numbers are

105, 1419, 1729, 1885, 4505, 5719, 15387, 24211, 25085, 27559, 31929, 54205, 59081, 114985, 207177, 208681, 233569, 287979, 294409, 336611, 353977, 448585, 507579, 982513, 1012121, 1073305, 1242709, 1485609, 2089257, 2263811, 2953711, … (sequence A051015 in the OEIS).

To give an example, 1729 is a Zeisel number with the constants a = 1 and b = 6, its factors being 7, 13 and 19, falling into the pattern

p 1 = 7 , p 1 = 1 p 0 + 6 p 2 = 13 , p 2 = 1 p 1 + 6 p 3 = 19 , p 3 = 1 p 2 + 6 {\displaystyle {\begin{aligned}p_{1}=7,&{}\quad p_{1}=1p_{0}+6\\p_{2}=13,&{}\quad p_{2}=1p_{1}+6\\p_{3}=19,&{}\quad p_{3}=1p_{2}+6\end{aligned}}}

1729 is an example for Carmichael numbers of the kind ( 6 n + 1 ) ( 12 n + 1 ) ( 18 n + 1 ) {\displaystyle (6n+1)(12n+1)(18n+1)} , which satisfies the pattern p x = a p x 1 + b {\displaystyle p_{x}=ap_{x-1}+b} with a= 1 and b = 6n, so that every Carmichael number of the form (6n+1)(12n+1)(18n+1) is a Zeisel number.

Other Carmichael numbers of that kind are: 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, … (sequence A033502 in the OEIS).

The name Zeisel numbers was probably introduced by Kevin Brown, who was looking for numbers that when plugged into the equation

2 k 1 + k {\displaystyle 2^{k-1}+k}

yield prime numbers. In a posting to the newsgroup sci.math on 1994-02-24, Helmut Zeisel pointed out that 1885 is one such number. Later it was discovered (by Kevin Brown?) that 1885 additionally has prime factors with the relationship described above, so a name like Brown-Zeisel Numbers might be more appropriate.

Hardy–Ramanujan's number 1729 is also a Zeisel number.